

Forum News and Views

Antioxidants as Therapy for Parkinson's Disease

CLIFFORD W. SHULTS

DURING THE PAST TWO DECADES, substantial data have accumulated indicating that excessive oxidative damage occurs in the nervous system in Parkinson's disease (PD) and that oxidative stress plays a role in the pathogenesis of the disorder. In the following review, I summarize the evidence that oxidative damage contributes to the pathogenesis of PD, the mechanisms for the generation of reactive oxygen species (ROS) in the brain, particularly in the nigrostriatal dopaminergic system, and the defenses against oxidative stress. Finally, I review the preclinical and clinical studies for antioxidant compounds proposed as therapies in PD.

EVIDENCE OF EXCESSIVE OXIDATIVE DAMAGE IN PD

ROS can damage proteins, lipids, and nucleic acids, and methods have been developed to measure the amount of oxidative damage to each of these cellular components. Protein carbonyls reflect oxidative damage (16), and widespread increases in protein carbonyls in postmortem PD brains have been reported (1). Lipid oxidation is reflected by increased levels of malondialdehyde and cholesterol lipid hydroperoxides (33), and both malondialdehyde (18) and cholesterol lipid hydroperoxides (20) have been found to be increased in parkinsonian brains. Oxidative damage to DNA is reflected in the amount of 8-hydroxy-2-deoxyguanosine and 8-hydroxyguanine, and increased levels have been reported in the brains (2, 61) and cerebrospinal fluid (CSF) and serum (37).

In addition to the direct action of oxygen free radicals on proteins, superoxide can react with nitric oxide to form peroxynitrite, which can result in nitration of proteins (32), and nitration of Lewy bodies has been reported in parkinsonian brains (22).

MECHANISMS FOR FORMATION OF ROS IN THE BRAIN

The most common ROS in the brain is superoxide, which is primarily produced in the mitochondria. Mitochondria are

the main source of adenosine triphosphate (ATP) in cells through oxidative phosphorylation in the mitochondria, but, unfortunately, passage of high-energy electrons down the mitochondrial electron transport chain can be a source not only of ATP, but also of ROS, as the high-energy electrons can react with O_2 to form superoxide (26). Up to 2% of the O_2 consumed by healthy mitochondria is estimated to be converted to superoxide, and this amount is higher in damaged and aged mitochondria.

Other sources of superoxide include xanthine oxidase (27, 42), which not only can produce superoxide, but has also recently been reported to be able to catalyze the formation of nitric oxide and peroxynitrite. However, it is located primarily in vasculature. NADPH oxidase, which is the superoxide-generating enzyme in phagocytes, is also expressed in microglia, astrocytes, and neurons in the brain (32).

Superoxide and hydrogen peroxide are not particularly toxic themselves, but they can be converted to hydroxyl radicals, which are highly reactive, by the Haber-Weiss reaction and the Fenton reaction, respectively. The presence of transition metals, *e.g.*, iron and copper, is crucial to the formation of hydroxyl radicals (26), and iron has been reported to be increased in the substantia nigra in PD brains (19). However, Beckman (7) has reported that these reactions are too slow to be a major source of toxicity. Ischiropoulos and Beckman (32) posit that the toxicity of superoxide may be enhanced through reaction catalyzed by peroxidases to produce hypohalous acids (HOCl, HOBr, and HOI) or that the toxicity of superoxide may be due to its interaction with nitric oxide to form peroxynitrite.

Dopaminergic neurons are at additional risk for oxidative damage because metabolism of dopamine in the presence of iron, copper, or manganese results in the formation of superoxide and hydrogen peroxide (26), which can be converted to the hydroxyl radical, as described above. Also, metabolism of dopamine by monoamine oxidase results in the formation of hydrogen peroxide.

Although substantial data indicate a role of oxidative stress in the pathogenesis of PD, a number of other pathogenic mechanisms have been implicated in PD, including mitochondrial dysfunction, inflammation, protein aggregation,

and impaired protein degradation. Obviously, certain of these mechanisms, *e.g.*, mitochondrial dysfunction and inflammation, can contribute to the formation of ROS, and ROS can accelerate certain of these mechanisms, *e.g.*, protein aggregation and mitochondrial dysfunction.

DEFENSES AGAINST OXIDATIVE DAMAGE

Cells have a number of mechanisms to deal with ROS; these include superoxide dismutase (SOD) 1 (Cu/Zn-SOD), which is located primarily in the cytosol, SOD 2 (Manganese SOD), which is located in the mitochondrial matrix, the glutathione system, catalase, and thioredoxin (26). SOD converts superoxide to hydrogen peroxide. Hydrogen peroxide is typically detoxified by glutathione peroxidase, thioredoxin, and catalase. In the presence of transition metals, hydrogen peroxide can be converted by the Fenton reaction to the highly reactive hydroxyl radical. Because of the potential toxicity of free iron and copper, they are sequestered by binding proteins. In plasma, iron is bound to transferrin, which is present in excess, and copper is bound to ceruloplasmin or other copper-binding proteins. In the cell, iron is bound by ferritin and copper by metallothionein. However, some iron and copper obviously must move between these binding proteins and enzymes that they are part of. The pool of “free” iron is increased by hydrogen peroxide and damage to cells.

The importance of SOD 2 is underscored by the fact that mice in which SOD 2 has been knocked out die several days after birth with severe mitochondrial damage in several tissues (40). Catalase converts hydrogen peroxide to H_2O and O_2 . Hydrogen peroxide can also be converted to H_2O by the glutathione peroxidase system.

Other antioxidant defenses are obtained from the diet, for example, ascorbate (vitamin C) and α -tocopherol (vitamin E). Ascorbate can reduce a number of ROS, including superoxide, hydroxyl radical, and peroxynitrite. α -Tocopherol is especially important because it is a potent chain breaking antioxidant in lipids, reducing the LO_2^{\cdot} with formation of the tocopherol radical, which has a lower capacity to propagate lipid peroxidation. The α -tocopherol radical can be reduced by ascorbate and reduced coenzyme Q₁₀ (ubiquinol). Other dietary antioxidants include β -carotene and polyphenols, particularly the flavonoids.

POTENTIAL ANTIOXIDANT THERAPIES IN PD

Selegiline (deprenyl)

The “Deprenyl and Tocopherol Antioxidative Treatment of Parkinsonism” (DATATOP) trial, which was conducted by Shoulson and colleagues in the Parkinson Study Group, was the first large trial of potential neuroprotective therapies in PD (55). The rationale for use of deprenyl (selegiline), which is an irreversible inhibitor of monoamine oxidase B (MAO-B), was twofold. First, deprenyl reduces metabolism of dopamine and

generation of hydrogen peroxide, a ROS, by MAO-B. Second, the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which is a protoxin, is converted to the neurotoxin 1-methyl-4-phenylpyridinium (MPP⁺) by MAO-B (14, 28). Researchers speculated that exogenous and endogenous compounds similar to MPTP might require conversion by MAO-B to be toxic. α -Tocopherol (vitamin E) was hoped to be protective through its antioxidant properties. Eight hundred subjects were randomized to receive one of four treatments: deprenyl (10 mg/day) and α -tocopherol (2,000 IU/day), deprenyl and α -tocopherol placebo, deprenyl placebo and α -tocopherol, deprenyl placebo and α -tocopherol placebo. The study demonstrated that treatment with deprenyl (with or without α -tocopherol) postponed disability requiring treatment with levodopa by ~9 months. However, a benefit was noted at 1 month, raising the possibility that the benefit of deprenyl was due to a symptomatic effect, perhaps by inhibition of dopamine metabolism. Treatment with α -tocopherol had no effect on the progression of PD.

Vitamin E (α -tocopherol)

Vitamin E is the generic name for a group of compounds known as tocopherols and tocotrienols (70). α -tocopherol is the major form of vitamin E in tissues of animals, including humans, and has the highest biological activity of all of the vitamin E compounds. Vitamin E is the major lipid-soluble, chain-breaking antioxidant in biological membranes (31). Some epidemiological studies have reported that dietary intake of vitamin E is associated with a lower risk of PD (17, 23), but another study using friends as case controls did not find this (62). Interestingly, Zhang *et al.* (74) reported that dietary, but not supplemental, intake of vitamin E was associated with a lower risk of PD, suggesting that vitamin E and other factors in diets high in vitamin E might have an effect on the risk for PD.

Perry *et al.* (57) reported that α -tocopherol protected the nigrostriatal dopaminergic system in MPTP-treated mice. However, other studies have not demonstrated benefit in MPTP-treated mice and marmosets (45, 48, 58). The negative results should be interpreted with caution because data from the study of Vatassery *et al.* (69) indicated the long period over which oral α -tocopherol gradually increases levels in the CSF and presumably in the brain. Vatassery *et al.* (69) reported that, in the DATATOP study (55) of 18 randomly selected subjects treated with α -tocopherol (2,000 IU/day, 37–644 days), there was a gradual, linear increase in the level of α -tocopherol in the CSF with increasing duration of treatment and a mean net increase of 76%. The net increase in CSF α -tocopherol concentrations after treatment showed a significant positive correlation with the number of days of vitamin E ingestion, suggesting that high-dose vitamin E treatment results in the elevation of CSF vitamin E levels and possibly brain vitamin E levels. However, a study of five PD patients did not find that oral α -tocopherol raised CSF levels (54). However, there were a number of differences between the two studies. The study of Pappert *et al.* (54) had fewer subjects, the subjects received dosages of α -tocopherol greater than 2,000 IU/day for only 2 months, and sampling was from the lateral ventricle where the study of Vatassery *et al.* (69) used lumbar CSF.

In the 6-hydroxydopamine (6-OHDA) model of PD in the rat, α -tocopherol has been shown to protect the nigrostriatal system (10). Roghani and Behzadi (60) reported benefit using *d*- α -tocopherol succinate, which reportedly gives higher and longer elevation of plasma levels.

As mentioned above, the DATATOP study indicated that α -tocopherol did not delay the need for levodopa in patients with early PD (55).

In a small, open-label, pilot study, Fahn (21) reported that treatment with both α -tocopherol and ascorbate (vitamin C) delayed the time until PD subjects needed treatment with levodopa or a dopaminergic agonist. Such combinations might merit further investigation.

Coenzyme Q₁₀

Coenzyme Q₁₀ is both the electron acceptor for complexes I and II of the mitochondrial electron transport chain and an antioxidant (66). The antioxidant effect of coenzyme Q₁₀ may be due to its ability to work in concert with α -tocopherol and reduce oxidized tocopherol and regenerate the reduced, antioxidant form (39).

Reduced levels of coenzyme Q₁₀ have been reported in PD. Matsubara *et al.* (46) reported that the serum level of coenzyme Q₁₀ in parkinsonian patients was significantly lower than that in patients with stroke, who were of similar age. Similarly, Molina *et al.* (49) reported that the serum level of coenzyme Q₁₀, but not the coenzyme Q₁₀/cholesterol ratio, was reduced in patients with Lewy body disease. However, Jiménez-Jiménez *et al.* (34) did not find a reduction in the serum level in PD. Shults *et al.* (67) reported reduced levels of coenzyme Q₁₀ in platelet mitochondria in patients with early untreated PD compared with age/gender-matched control subjects.

Coenzyme Q₁₀ has been shown to reduce damage to the nigrostriatal dopaminergic system in MPTP-treated mice and monkeys (5, 29).

Shults *et al.* (68) reported in a Phase II trial of three dosages (300, 600, and 1,200 mg/day) of coenzyme Q₁₀ versus placebo (all subjects also received α -tocopherol at 1,200 IU/day) in patients with early untreated PD a positive trend toward slowing the functional decline as measured by the Unified Parkinson Disease Rating Scale. However, the authors have stressed that the results need to be confirmed and extended in a definitive Phase III trial before the recommendation can be made for widespread use of coenzyme Q₁₀ in PD.

Dopaminergic agonists

Dopaminergic agonists have been used in the treatment of PD for over two decades on the basis of their ability to mimic the action of dopamine through binding to dopaminergic receptors. In addition, a number of dopaminergic agonists have been reported to be antioxidants with protective effects in models of PD. These include apomorphine (25), bromocriptine (52), cabergoline (73), pramipexole (3), and ropinirole (30). Studies have reported that ropinirole (30) not only acts as a ROS scavenger, but also up-regulates endogenous ROS-scavenging systems, apparently through the D₂ receptor, and that pramipexole also acts as an inhibitor of the mitochondrial permeability transition pore (11).

The potential neuroprotective effects of dopaminergic agonists in PD have been studied in two clinical trials comparing

ropinirole (71) or pramipexole (56) with levodopa in patients with early PD using [¹⁸F]fluorodopa PET or [¹²³I] β -CIT SPECT, respectively, as biomarkers of the preservation of remaining nigrostriatal dopaminergic axons. Patients treated initially with ropinirole had greater [¹⁸F]fluorodopa accumulation in the striatum than those treated with levodopa at 2 years after initiation of therapy, and patients treated initially with pramipexole had greater [¹²³I] β -CIT binding in the striatum than those treated with levodopa at 22, 34, and 46 months after initiation of therapy. Unfortunately, the effects of levodopa and dopaminergic agonists on accumulation of [¹⁸F]fluorodopa PET and [¹²³I] β -CIT SPECT are not known, and these agents may cause adaptive changes in [¹⁸F]fluorodopa metabolism and/or [¹²³I] β -CIT binding, so the results cannot be unequivocally interpreted as indicative of preservation of nigrostriatal dopaminergic axons (9).

Melatonin

Melatonin is an indole synthesized from serotonin by 5-methylation and *N*-acetylation in the pineal gland. In addition to its role in circadian rhythms, melatonin has been found to have antioxidant capabilities, both as an antioxidant itself and possibly through its ability to stimulate endogenous antioxidant systems, *e.g.*, SOD, glutathione peroxidase, and glutathione reductase (59). Melatonin has been reported to be protective of the nigrostriatal dopaminergic system in rats treated with 6-OHDA (15) and MPP⁺ (35). In mice treated with chronic, low-dose MPTP treatment, melatonin provided substantial benefit (4), but the benefit was less in animals treated with an acute MPTP lesion model (43). Not all groups have found benefit. Willis and Armstrong (72) reported that intracerebroventricular implants of slow-release melatonin in rats undergoing central injection of 6-OHDA or intraperitoneal injection of MPTP worsened outcome on a number of behavioral tests, but levels of dopamine and number of dopaminergic neurons were not reported. Intraperitoneal injection of MPTP is typically an effective model of parkinsonism in mice, but not in rats. Also, Morgan and Nelson (50) did not find benefit of melatonin in mice chronically administered it in drinking water (raising the plasma level 20-fold) and later treated with MPTP.

Despite, the availability of melatonin and some evidence that it can be protective of the nigrostriatal dopaminergic system in models of PD, there has been relatively little research on its effects in patients with PD. Over 30 years ago, Shaw *et al.* (65) reported that in four PD patients it did not affect disability at doses up to 1 g per day.

Polyphenols

There has been increasing interest in polyphenols, particularly flavonoids and catechins, as potential treatments for a number of disorders, including PD (44). Sources of polyphenols include green tea and berries (8). Studies have indicated that treatment of mice with either green tea extract or (–)-epigallocatechin-3-gallate, a polyphenolic extract of green tea, prevented MPTP-induced injury to the nigrostriatal dopaminergic system (13, 41) and in PC12 cells treated with 6-OHDA (53). However, Levites *et al.* (41) reported protection at lower, but not higher, doses of green tea extract and that green tea extract and (–)-epigallocatechin-3-gallate

were weak inhibitors of MAO-B, but did not increase striatal levels of dopamine in mice not treated with MPTP.

A single study has found an association between consumption of tea and reduced prevalence of PD, but the effect may be through caffeine (12).

Further investigation of the usefulness of polyphenols, particularly flavonoids, as agents in PD seems warranted.

Miscellaneous agents

Nitron spin traps. Molecules incorporating a nitron moiety, which have been nicknamed spin traps and were first developed as tools for study of oxidative reactions, were noted to be able to protect biological systems from oxidative damage (6, 24). Beal and his colleagues have reported on protection of the nigrostriatal dopaminergic system in MPTP-treated mice by a series of nitron compounds (38, 47, 63).

Iron-chelating agents. Because of the increase in iron in the substantia nigra in PD (19) and the role that it plays in the generation of hydroxyl radicals, research has been directed to development of therapies to reduce iron levels, particularly through the use of chelating agents. Kaur *et al.* (36) reported that oral administration of the bioavailable metal chelator clioquinol reduced damage to the nigrostriatal dopaminergic system in MPTP-treated mice. Shachar *et al.* (64) more recently reported that a brain permeable iron chelator (VK-28) protected against 6-OHDA administered intracerebroventricularly.

Ebselen. Ebselen, which has glutathione peroxidase-like activity, has been reported to ameliorate the behavioral impairment and attenuate the loss of nigral neurons in MPTP-treated marmosets (51).

CONCLUSION

Excessive oxidative damage in PD is now well established, and a number of pathogenic mechanisms that appear to be involved in PD, *e.g.*, mitochondrial dysfunction and inflammation, could contribute to oxidative stress. Certain potential antioxidant therapies have been demonstrated to be beneficial in animal models of PD. However, in a number of preclinical studies, the antioxidant tested has not been found to be protective of the nigrostriatal dopaminergic system, and careful consideration should be given to the dose, duration of treatment, and model used. One Phase II trial of a mitochondrial component with antioxidant properties, coenzyme Q₁₀, with α -tocopherol showed a positive trend toward benefit in patients with early PD, but the one Phase III trial of an antioxidant treatment, high dosage of α -tocopherol, did not demonstrate benefit. Antioxidants warrant further preclinical studies in models of PD, and for promising compounds clinical studies in PD patients.

ACKNOWLEDGMENTS

Dr. Shults was supported by a grant from the National Institutes of Health, NIH PO1 NS044233.

Dr. Shults is listed as co-inventor in a pending patent application for the use of coenzyme Q₁₀ in neurodegenerative diseases. The application is jointly owned by Enzymatic Therapy, Inc. and The Regents of the University of California.

ABBREVIATIONS

ATP, adenosine triphosphate; CSF, cerebrospinal fluid; DATATOP, Deprenyl and Tocopherol Antioxidative Treatment of Parkinsonism; MAO-B, monoamine oxidase B; MPP+, 1-methyl-4-phenylpyridinium; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 6-OHDA, 6-hydroxydopamine; PD, Parkinson's disease; ROS, reactive oxygen species; SOD, superoxide dismutase.

REFERENCES

1. Alam ZI, Daniel SE, Lees AJ, Marsden DC, Jenner P, and Halliwell B. A generalized increase in protein carbonyls in the brain in Parkinson's but not incidental Lewy body disease. *J Neurochem* 69: 1326–1329, 1997.
2. Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, and Halliwell B. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. *J Neurochem* 69: 1196–2003, 1997.
3. Anderson DW, Neavin T, Smith JA, and Schneider JS. Neuroprotective effects of pramipexole in young and aged MPTP-treated mice. *Brain Res* 905: 44–53, 2001.
4. Antolín I, Mayo JC, Sainz RM, del Brío M de L, Herrera F, Martín V, and Rodríguez C. Protective effect of melatonin in a chronic experimental model of Parkinson's disease. *Brain Res* 943: 163–173, 2002.
5. Beal MF, Matthews RT, Tielemans A, and Shults CW. Coenzyme Q₁₀ attenuates the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. *Brain Res* 783: 109–114, 1998.
6. Becker DA. Diagnostic and therapeutic applications of azulenyl nitron spin traps. *Cell Mol Life* 56: 626–633, 1999.
7. Beckman JS. Peroxynitrite versus hydroxyl radical: the role of nitric oxide in superoxide-dependent cerebral injury. *Ann NY Acad Sci* 738: 69–75, 1994.
8. Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. *Nutr Rev* 56: 317–333, 1998.
9. Brooks DJ, Frey KA, Marek KL, Oakes D, Paty D, Prentice R, Shults CW, and Stoessl AJ. Assessment of neuroimaging techniques as biomarkers of the progression of Parkinson's disease. *Exp Neurol* 184(Suppl 1): S68–S79, 2003.
10. Cadet JL, Katz M, Jackson-Lewis V, and Fahn S. Vitamin E attenuates the toxic effects of intrastriatal injection of 6-hydroxydopamine (6-OHDA) in rats: behavioral and biochemical evidence. *Brain Res* 476: 10–15, 1989.
11. Cassarino DS, Fall CP, Smith TS, and Bennett JP Jr. Pramipexole reduces reactive oxygen species production in vivo and in vitro and inhibits the mitochondrial permeability transition produced by the parkinsonian neurotoxin methylpyridinium ion. *J Neurochem* 71: 295–301, 1998.

12. Checkoway H, Powers K, Smith-Weller T, Franklin GM, Longstreth WT Jr, and Swanson PD. Parkinson's disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. *Am J Epidemiol* 155: 732–738, 2002.
13. Choi JY, Park CS, Kim DJ, Cho MH, Jin BK, Pie JE, and Chung WG. Prevention of nitric oxide-mediated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease in mice by tea phenolic epigallocatechin 3-gallate. *Neurotoxicology* 23: 367–374, 2002.
14. Cohen G, Pasik P, Cohen B, Leist A, Mytilineou C, and Yahr MD. Pargyline and deprenyl prevent the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in monkeys. *Eur J Pharmacol* 106: 209–210, 1984.
15. Dabbeni-Sala F, Di Santo S, Franceschini D, Skaper SD, and Giusti P. Melatonin protects against 6-OHDA-induced neurotoxicity in rats: a role for mitochondrial complex I activity. *FASEB J* 15: 164–170 2001.
16. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, and Milzani A. Protein carbonylation in human diseases. *Trends Mol Med* 9: 169–176, 2003.
17. de Rijk MC, Breteler MM, den Breeijen JH, Launer LJ, Grobbee DE, van der Meché FG, and Hofman A. Dietary antioxidants and Parkinson disease. The Rotterdam Study. *Arch Neurol* 54: 762–765, 1997.
18. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, and Marsden CD. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. *J Neurochem* 52: 381–389, 1989.
19. Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P, and Marsden CD. Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia. *Brain* 114(Pt 4): 1953–1975, 1991.
20. Dexter DT, Holley AE, Flitter WD, Slater TF, Wells FR, Daniel SE, Lees AJ, Jenner P, and Marsden CD. Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. *Mov Disord* 9: 92–97, 1994. Erratum in: *Mov Disord* 9: 380, 1994.
21. Fahn S. A pilot trial of high-dose alpha-tocopherol and ascorbate in early Parkinson's disease. *Ann Neurol* 32 Suppl: S128–S132, 1992.
22. Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, and Lee VM. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. *Science* 90: 985–989, 2000.
23. Golbe LI, Farrell TM, and Davis PH. Case-control study of early life dietary factors in Parkinson's disease. *Arch Neurol* 45: 1350–1353, 1988.
24. Goldstein S and Lestage P. Chemical and pharmacological aspects of heteroaryl-nitrones. *Curr Med Chem* 7: 1255–1267, 2000.
25. Grünblatt E, Mandel S, Gassen M, and Youdim MB. Potent neuroprotective and antioxidant activity of apomorphine in MPTP and 6-hydroxydopamine induced neurotoxicity. *J Neural Transm Suppl* 55: 57–70, 1999.
26. Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. *Drugs Aging* 18: 685–716, 2001.
27. Harrison R. Structure and function of xanthine oxidoreductase: where are we now? *Free Radic Biol Med* 33: 774–797, 2002.
28. Heikkila RE, Hess A, and Duvoisin RC. Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) in the mouse: relationships between monoamine oxidase, MPTP metabolism and neurotoxicity. *Life Sci* 36: 231–236, 1985.
29. Horvath TL, Diano S, Leranth C, Garcia-Segura LM, Cowley MA, Shanabrough M, Elsworth JD, Sotonyi P, Roth RH, Dietrich EH, Matthews RT, Barnstable CJ, and Redmond DE Jr. Coenzyme Q induces nigral mitochondrial uncoupling and prevents dopamine cell loss in a primate model of Parkinson's disease. *Endocrinology* 144(Suppl 7): 2757–2760, 2003.
30. Iida M, Miyazaki I, Tanaka K, Kabuto H, Iwata-Ichikawa E, and Ogawa N. Dopamine D2 receptor-mediated antioxidant and neuroprotective effects of ropinirole, a dopamine agonist. *Brain Res* 838: 51–59, 1999.
31. Ingold KU, Webb AC, Witter D, Burton GW, Metcalfe TA, and Muller DP. Vitamin E remains the major lipid-soluble, chain-breaking antioxidant in human plasma even in individuals suffering severe vitamin E deficiency. *Arch Biochem Biophys* 259: 224–225, 1987.
32. Ischiropoulos H and Beckman JS. Oxidative stress and nitration in neurodegeneration: cause, effect, or association? *J Clin Invest* 111: 163–169, 2003.
33. Jenner P. Oxidative stress in Parkinson's disease. *Ann Neurol* 53 Suppl 3: S26–S36; discussion S36–S38, 2003.
34. Jiménez-Jiménez FJ, Molina JA, de Bustos F, García-Redondo A, Gómez-Escalona C, Martínez-Salio A, Berbel A, Camacho A, Zurdo M, Barcenilla B, Enríquez de Salamanca R, and Arenas J. Serum levels of coenzyme Q10 in patients with Parkinson's disease. *J Neural Transm* 107: 177–181, 2000.
35. Jin BK, Shin DY, Jeong MY, Gwag MR, Baik HW, Yoon KS, Cho YH, Joo WS, Kim YS, and Baik HH. Melatonin protects nigral dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP⁺) neurotoxicity in rats. *Neurosci Lett* 245: 61–64, 1998.
36. Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, Viswanath V, Jacobs R, Yang L, Beal MF, Di-Monte D, Volitakis I, Ellerby L, Cherny RA, Bush AI, and Andersen JK. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease. *Neuron* 37: 899–909, 2003.
37. Kikuchi A, Takeda A, Onodera H, Kimpara T, Hisanaga K, Sato N, Nunomura A, Castellani RJ, Perry G, Smith MA, and Itoyama Y. Systemic increase of oxidative nucleic acid damage in Parkinson's disease and multiple system atrophy. *Neurobiol Dis* 9: 244–248, 2002.
38. Klivenyi P, Matthews RT, Wermer M, Yang L, MacGarvey U, Becker DA, Natero R, and Beal MF. Azulenyl nitrone spin traps protect against MPTP neurotoxicity. *Exp Neurol* 152: 163–166, 1998.
39. Lass A and Sohal RS. Electron transport-linked ubiquinone-dependent recycling of α -tocopherol inhibits autoxidation of mitochondrial membranes. *Arch Biochem Biophys* 352: 229–236, 1998.

40. Lebovitz RM, Zhang H, Vogel H, Cartwright J Jr, Dionne L, Lu N, Huang S, and Matzuk MM. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. *Proc Natl Acad Sci U S A* 93: 9782–9787, 1996.

41. Levites Y, Weinreb O, Maor G, Youdim MB, and Mandel S. Green tea polyphenol (−)-epigallocatechin-3-gallate prevents *N*-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. *J Neurochem* 78: 1073–1082, 2001.

42. Lewén A, Matz P, and Chan PH. Free radical pathways in CNS injury. *J Neurotrauma* 17: 871–890, 2000.

43. Li XJ, Gu J, Lu SD, and Sun FY. Melatonin attenuates MPTP-induced dopaminergic neuronal injury associated with scavenging hydroxyl radical. *J Pineal Res* 32: 47–52, 2002.

44. Mandel S, Weinreb O, Amit T, and Youdim MB. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (−)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. *J Neurochem* 88: 1555–1569, 2004.

45. Martinovits G, Melamed E, Cohen O, Rosenthal J, and Uzzan A. Systemic administration of antioxidants does not protect mice against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). *Neurosci Lett* 69: 192–197, 1986.

46. Matsubara T, Azuma T, Yoshida S, and Yamagami T. Serum coenzyme Q-10 level in Parkinson syndrome. In: *Biomedical and Clinical Aspects of Coenzyme Q*, edited by Folkers K, Littarru GP, and Yamagami, T. Amsterdam: Elsevier Science Publishers, 1991, pp. 159–166.

47. Matthews RT, Klivenyi P, Mueller G, Yang L, Wermer M, Thomas CE, and Beal MF. Novel free radical spin traps protect against malonate and MPTP neurotoxicity. *Exp Neurol* 157: 120–126, 1999.

48. Mihatsch W, Russ H, Gerlach M, Riederer P, and Przuntek H. Treatment with antioxidants does not prevent loss of dopamine in the striatum of MPTP-treated common marmosets: preliminary observations. *J Neural Transm Park Dis Dement Sect* 3: 73–78, 1991.

49. Molina JA, de Bustos F, Ortiz S, Del Ser T, Seijo M, Benito-Léon J, Oliva JM, Pérez S, and Manzanares J. Serum levels of coenzyme Q in patients with Lewy body disease. *J Neural Transm* 109: 1195–1201, 2002.

50. Morgan WW and Nelson JF. Chronic administration of pharmacological levels of melatonin does not ameliorate the MPTP-induced degeneration of the nigrostriatal pathway. *Brain Res* 921: 115–121, 2001.

51. Moussaoui S, Obinu MC, Daniel N, Reibaud M, Blanchard V, and Imperato A. The antioxidant ebselen prevents neurotoxicity and clinical symptoms in a primate model of Parkinson's disease. *Exp Neurol* 166: 235–245, 2000.

52. Muralikrishnan D and Mohanakumar KP. Neuroprotection by bromocriptine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice. *FASEB J* 12: 905–912, 1998.

53. Nie G, Cao Y, and Zhao B. Protective effects of green tea polyphenols and their major component, (−)-epigallocatechin-3-gallate (EGCG), on 6-hydroxydopamine-induced apoptosis in PC12 cells. *Redox Rep* 7: 171–177, 2002.

54. Pappert EJ, Tangney CC, Goetz CG, Ling ZD, Lipton JW, Stebbins GT, and Carvey PM. Alpha-tocopherol in the ventricular cerebrospinal fluid of Parkinson's disease patients: dose-response study and correlations with plasma levels. *Neurology* 47: 1037–1042, 1996.

55. Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson's disease. *N Engl J Med* 328: 176–183, 1993.

56. Parkinson Study Group. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. *JAMA* 287: 1653–1661, 2002.

57. Perry TL, Yong VW, Clavier RM, Jones K, Wright JM, Foulks JG, and Wall RA. Partial protection from the dopaminergic neurotoxin *N*-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by four different antioxidants in the mouse. *Neurosci Lett* 60: 109–114, 1985.

58. Perry TL, Yong VW, Hansen S, Jones K, Bergeron C, Foulks JG, and Wright JM. Alpha-tocopherol and beta-carotene do not protect marmosets against the dopaminergic neurotoxicity of *N*-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. *J Neurol Sci* 81: 321–331, 1987.

59. Reiter RJ, Carneiro RC, and Oh CS. Melatonin in relation to cellular antioxidative defense mechanisms. *Horm Metab Res* 29: 363–372, 1997.

60. Roghani M and Behzadi G. Neuroprotective effect of vitamin E on the early model of Parkinson's disease in rat: behavioral and histochemical evidence. *Brain Res* 892: 211–217, 2001.

61. Sanchez-Ramos JR, Overvill E, and Ames BN. A marker of oxyradical-mediated DNA damage (8-hydroxy-2'-deoxyguanosine) is increased in nigro-striatum of Parkinson's disease brain. *Neurodegeneration* 3: 197–204, 1994.

62. Scheider WL, Hershey LA, Vena JE, Holmlund T, Marshall JR, and Freudenheim JL. Dietary antioxidants and other dietary factors in the etiology of Parkinson's disease. *Mov Disord* 12: 190–196, 1997.

63. Schulz JB, Henshaw DR, Matthews RT, and Beal MF. Coenzyme Q10 and nicotinamide and a free radical spin trap protect against MPTP neurotoxicity. *Exp Neurol* 132: 279–283, 1995.

64. Shachar DB, Kahana N, Kampel V, Warshawsky A, and Youdim MB. Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lesion in rats. *Neuropharmacology* 46: 254–263, 2004.

65. Shaw KM, Stern GM, and Sandler M. Melatonin and parkinsonism. *Lancet* 1: 271, 1973.

66. Shults CW. Coenzyme Q₁₀ in neurodegenerative diseases. *Curr Med Chem* 10: 1917–1921, 2003.

67. Shults CW, Haas RH, Passov D, and Beal MF. Coenzyme Q₁₀ levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects. *Ann Neurol* 42: 261–264, 1997.

68. Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, Juncos JL, Nutt J, Shoulson I, Carter J, Kompoliti K, Perlmuter JS, Reich S, Stern M, Watts RL, Kurlan R, Molho E, Harrison M, Lew M, and the Parkinson Study Group. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. *Arch Neurol* 59: 1541–1550, 2002.

69. Vatassery GT, Fahn S, and Kuskowski MA. Alpha tocopherol in CSF of subjects taking high-dose vitamin E in the DATATOP study. Parkinson Study Group. *Neurology* 50: 1900–1902, 1998.

70. Vatassery GT, Bauer T, and Dysken M. High doses of vitamin E in the treatment of disorders of the central nervous system in the aged. *Am J Clin Nutr* 70: 793–801, 1999.

71. Whone AL, Watts RL, Stoessl AJ, Davis M, Reske S, Nahmias C, Lang AE, Rascol O, Ribeiro MJ, Remy P, Poewe WH, Hauser RA, and Brooks DJ. REAL-PET Study Group. Slower progression of Parkinson's disease with ropinirole versus levodopa: The REAL-PET study. *Ann Neurol* 54: 93–101, 2003.

72. Willis GL and Armstrong SM. A therapeutic role for melatonin antagonism in experimental models of Parkinson's disease. *Physiol Behav* 66: 785–795, 1999.

73. Yoshioka M, Tanaka K, Miyazaki I, Fujita N, Higashi Y, Asanuma M, and Ogawa N. The dopamine agonist cabergoline provides neuroprotection by activation of the glutathione system and scavenging free radicals. *Neurosci Res* 43: 259–267, 2002.

74. Zhang SM, Hernán MA, Chen H, Spiegelman D, Willett WC, and Ascherio A. Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. *Neurology* 59: 1161–1169, 2002.

Address reprint requests to:

Clifford W. Shults, M.D.

Department of Neurosciences, 0662

University of California, San Diego

9500 Gilman Drive

La Jolla, CA 92093-0662

E-mail: cshults@ucsd.edu

Received for publication September 27, 2004; accepted November 30, 2004.

This article has been cited by:

1. Andrea Cossarizza, Roberta Ferraresi, Leonarda Troiano, Erika Roat, Lara Gibellini, Linda Bertoncelli, Milena Nasi, Marcello Pinti. 2009. Simultaneous analysis of reactive oxygen species and reduced glutathione content in living cells by polychromatic flow cytometry. *Nature Protocols* **4**:12, 1790-1797. [[CrossRef](#)]
2. Todd B. Sherer , J. Timothy Greenamyre . 2005. Oxidative Damage in Parkinson's Disease. *Antioxidants & Redox Signaling* **7**:5-6, 627-629. [[Citation](#)] [[Full Text PDF](#)] [[Full Text PDF with Links](#)]